Deploying power grid-integrated electric vehicles as a multi-agent system
نویسندگان
چکیده
Grid-Integrated Vehicles (GIVs) are plug-in Electric Drive Vehicles (EDVs) with power-management and other controls that allow them to respond to external commands sent by power-grid operators, or their affiliates, when parked and plugged-in to the grid. At a bare minimum, such GIVs should respond to demand-management commands or pricing signals to delay, reduce or switch-off the rate of charging when the demand for electricity is high. In more advanced cases, these GIVs might sell both power and storage capacity back to the grid in any of the several electric power markets — a concept known as Vehicle-to-Grid power or V2G power. Although individual EDVs control too little power to sell in the market at an individual level, a large group of EDVs may form an aggregate or coalition that controls enough power to meaningfully sell, at a profit, in these markets. The profits made by such a coalition can then be used by the coalition members to offset the costs of the electric vehicles and batteries themselves. In this paper we describe an implemented and deployed multi-agent system that is used to integrate EDVs into the electricity grid managed by PJM, the largest transmission service operator in the world. We provide a brief introduction to GIVs and the various power markets and discuss why multi-agent systems are a good match for this application.
منابع مشابه
Intelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems
The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...
متن کاملResource Scheduling in a Smart Grid with Renewable Energy Resources and Plug-In Vehicles by MINLP Method
This paper presents a formulation of unit commitment for thermal units integrated with wind and solar energy systems and electrical vehicles with emphasizing on Mixed Integer Nonlinear Programming (MINLP). The renewable energy resources are included in this model due to their low electricity cost and positive effect on environment. As well as, coordinated charging strategy of electrical vehicle...
متن کاملBidirectional Buck-Boost Integrated Converter for Plug-in Hybrid Electric Vehicles
Background and Objectives: Power electronics infrastructures play an important role in charging different types of electric vehicles (EVs) especially Plug-in Hybrid EVs (PHEVs). Designing appropriate power converters is the topic of various studies. Method: In this paper, a novel bidirectional buck-boost multifunctional integrated converter is presented which is capable of handling battery and ...
متن کاملDetailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کامل